Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_2^3 \frac{x}{x^2 + 1} d x . Then, \]
\[I = \frac{1}{2} \int_2^3 \frac{2x}{x^2 + 1}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \log \left( x^2 + 1 \right) \right]_2^3 \]
\[ \Rightarrow I = \frac{1}{2}\left( \log 10 - \log 5 \right)\]
\[ \Rightarrow I = \frac{1}{2}\log \frac{10}{5} \left[ \because \log a - \log b = \log \frac{a}{b} \right]\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is