हिंदी

3 ∫ 2 X X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

उत्तर

\[Let I = \int_2^3 \frac{x}{x^2 + 1} d x . Then, \]
\[I = \frac{1}{2} \int_2^3 \frac{2x}{x^2 + 1}\]
\[ \Rightarrow I = \frac{1}{2} \left[ \log \left( x^2 + 1 \right) \right]_2^3 \]
\[ \Rightarrow I = \frac{1}{2}\left( \log 10 - \log 5 \right)\]
\[ \Rightarrow I = \frac{1}{2}\log \frac{10}{5} \left[ \because \log a - \log b = \log \frac{a}{b} \right]\]
\[ \Rightarrow I = \frac{1}{2}\log 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 5 | पृष्ठ १६

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×