Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 3, f\left( x \right) = 3x - 2, h = \frac{3 - 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_1^3 \left( 3x - 2 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left( 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 3 - 2 \right) + \left( 3 + 3h - 2 \right) + \left( 3 + 6h - 2 \right) . . . . . . . . . . . . . . . + \left( 3\left( n - 1 \right)h + 3 - 2 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ n + 3h\left( 1 + 2 + 3 . . . . . . . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ n + 3h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ n + 3n - 3 \right]\]
\[ = \lim_{n \to \infty} 2\left( 4 - \frac{3}{n} \right)\]
\[ = 8\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.