हिंदी

1 ∫ 0 Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

उत्तर

\[Let\ I = \int_0^1 \frac{\tan^{- 1} x}{1 + x^2} d\ x . Then, \]
\[Let\ \tan^{- 1} x = t . Then, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = 1, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} t dt\]
\[ \Rightarrow I = \left[ \frac{t^2}{2} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{\pi^2}{32}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 30 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×