हिंदी

Evaluate d∫x2+xx4-9dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`

योग

उत्तर

We have I = `int (x^2 + x)/(x^4 - 9) "d"x`

= `int x^2/(x^4 - 9) "d"x + (x"d"x)/(x^4 - 9)`

= I1 + I2

Now I1 = int x^3/(x^4 - 9)`

Put t = x4 – 9

So that 4x3 dx = dt.

Therefore I1 = `1/4 int "dt"/"t"`

= `1/4 log|"t"| + "C"_1`

= `1/4 log|x^4 - 9| + "C"_1`

Again, I2 = `int (x"d"x)/(x^4 - 9)`

Put x2 = u

So that 2x dx = du

Then I2 = `1/2 int "du"/("u"^2 - (3)^2)`

= `1/(2 xx 6) log|("u" - 3)/("u" + 3)| + "C"_2`

= `1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"_2`.

Thus I = I1 + I2

= `1/4 log|x^4 - 9| + 1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 16 | पृष्ठ १५४

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

Γ(4)


Choose the correct alternative:

Γ(1) is


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×