Advertisements
Advertisements
प्रश्न
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
उत्तर
We have I = `int (x^2 + x)/(x^4 - 9) "d"x`
= `int x^2/(x^4 - 9) "d"x + (x"d"x)/(x^4 - 9)`
= I1 + I2
Now I1 = int x^3/(x^4 - 9)`
Put t = x4 – 9
So that 4x3 dx = dt.
Therefore I1 = `1/4 int "dt"/"t"`
= `1/4 log|"t"| + "C"_1`
= `1/4 log|x^4 - 9| + "C"_1`
Again, I2 = `int (x"d"x)/(x^4 - 9)`
Put x2 = u
So that 2x dx = du
Then I2 = `1/2 int "du"/("u"^2 - (3)^2)`
= `1/(2 xx 6) log|("u" - 3)/("u" + 3)| + "C"_2`
= `1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"_2`.
Thus I = I1 + I2
= `1/4 log|x^4 - 9| + 1/12 log|(x^2 - 3)/(x^2 + 3)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
Γ(1) is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.