Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \tan^{- 1} x\ d\ x\ . Then, \]
\[I = \int_0^1 1 \tan^{- 1} x\ d\ x\]
\[\text{Integrating by parts}\]
\[I = \left[ x \tan^{- 1} x \right]_0^1 - \int_0^1 \frac{x}{1 + x^2} d x\]
\[ \Rightarrow I = \left[ x \tan^{- 1} x \right]_0^1 - \frac{1}{2} \left[ \log \left( x^2 + 1 \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{4} - 0 - \frac{1}{2} \log 2 + 0\]
\[ \Rightarrow I = \frac{\pi}{4} - \frac{1}{2} \log 2\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`