मराठी

∞ ∫ 0 Log X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[Putting\ x = \tan \theta\]

\[ \Rightarrow dx = \sec^2 \theta d\theta\]

\[When\ x \to 0 ; \theta \to 0\]

\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]

\[\text{Now, integral becomes},\]

\[I = \int\limits_0^\frac{\pi}{2} \frac{\log \left( \tan \theta \right)}{1 + \tan^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta ...............\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log\left[ \tan \left( \frac{\pi}{2} - \theta \right) \right] d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta ..................\left( 2 \right)\]
\[\text{Adding} \left( 1 \right)and \left( 2 \right), \text{we get}\]

\[2I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta + \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \right) + \log \left( \cot \theta \right) \right] d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \times \cot \theta \right) \right] d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left( \log 1 \right) d\theta\]

\[ = \int\limits_0^\frac{\pi}{2} \left( 0 \right) d\theta\]

\[ \Rightarrow 2I = 0\]

\[ \Rightarrow I = 0\]

\[ \therefore \int\limits_0^\infty \frac{\log x}{1 + x^2} dx = 0\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 8 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×