Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
\[Putting\ x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[When\ x \to 0 ; \theta \to 0\]
\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]
\[\text{Now, integral becomes},\]
\[I = \int\limits_0^\frac{\pi}{2} \frac{\log \left( \tan \theta \right)}{1 + \tan^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta ...............\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log\left[ \tan \left( \frac{\pi}{2} - \theta \right) \right] d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta ..................\left( 2 \right)\]
\[\text{Adding} \left( 1 \right)and \left( 2 \right), \text{we get}\]
\[2I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta + \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \right) + \log \left( \cot \theta \right) \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \times \cot \theta \right) \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left( \log 1 \right) d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left( 0 \right) d\theta\]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
\[ \therefore \int\limits_0^\infty \frac{\log x}{1 + x^2} dx = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Find: `int logx/(1 + log x)^2 dx`