Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\limits_0^1 \frac{\log \left( 1 + x \right)}{1 + x^2} dx\]
\[Putting\ x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[\text{When }x \to 0 ; \theta \to 0\]
\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]
\[\text{Now, integral becomes}\]
\[I = \int\limits_0^\frac{\pi}{4} \frac{\log \left( 1 + \tan \theta \right)}{\sec^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log \left( 1 + \tan \theta \right) \right] d\theta ................\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \tan \left( \frac{\pi}{4} - \theta \right) \right\} \right] d\theta ...................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{\tan\frac{\pi}{4} - \tan \theta}{1 + \tan\frac{\pi}{4} \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ \frac{2}{1 + \tan \theta} \right\} \right] d\theta\]
\[I = \int_0^\frac{\pi}{4} \left[ \log 2 - \log \left( 1 + \tan \theta \right) \right] d\theta . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int_0^\frac{\pi}{4} \left( \log 2 \right) d\theta\]
\[ \Rightarrow 2I = \left( \log 2 \right) \left[ \theta \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \frac{\pi}{4}\log 2\]
\[ \Rightarrow I = \frac{\pi}{8}\log 2\]
\[ \therefore \int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2}dx = \frac{\pi}{8}\log 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`