मराठी

1 ∫ 0 Log ( 1 + X ) 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 

बेरीज

उत्तर

We have,

\[I = \int\limits_0^1 \frac{\log \left( 1 + x \right)}{1 + x^2} dx\]

\[Putting\ x = \tan \theta\]

\[ \Rightarrow dx = \sec^2 \theta d\theta\]

\[\text{When }x \to 0 ; \theta \to 0\]

\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]

\[\text{Now, integral becomes}\]

\[I = \int\limits_0^\frac{\pi}{4} \frac{\log \left( 1 + \tan \theta \right)}{\sec^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log \left( 1 + \tan \theta \right) \right] d\theta ................\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \tan \left( \frac{\pi}{4} - \theta \right) \right\} \right] d\theta ...................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{\tan\frac{\pi}{4} - \tan \theta}{1 + \tan\frac{\pi}{4} \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} \right\} \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{4} \left[ \log\left\{ \frac{2}{1 + \tan \theta} \right\} \right] d\theta\]
\[I = \int_0^\frac{\pi}{4} \left[ \log 2 - \log \left( 1 + \tan \theta \right) \right] d\theta . . . . . \left( 2 \right)\]

\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]

\[2I = \int_0^\frac{\pi}{4} \left( \log 2 \right) d\theta\]

\[ \Rightarrow 2I = \left( \log 2 \right) \left[ \theta \right]_0^\frac{\pi}{4} \]

\[ \Rightarrow 2I = \frac{\pi}{4}\log 2\]

\[ \Rightarrow I = \frac{\pi}{8}\log 2\]

\[ \therefore \int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2}dx = \frac{\pi}{8}\log 2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 9 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×