Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^3 \frac{\log x}{\left( 1 + x \right)^2} d\ x\ . Then, \]
\[I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 - \int_1^3 \frac{1}{x}\left( \frac{- 1}{x + 1} \right) d x\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \int_1^3 \frac{1}{x\left( x + 1 \right)} dx\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \int_1^3 \left( \frac{1}{x} - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \left[ \log x - \log \left( x + 1 \right) \right]_1^3 \]
\[ \Rightarrow I = \frac{- 1}{4} \log 3 + \log 3 - \log 4 + \log 2\]
\[ \Rightarrow I = \frac{3}{4} \log 3 - \log 2\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`