Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
उत्तर
\[\int_0^\pi \frac{1}{6 - \cos x} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{6 + 6 \tan^2 \frac{x}{2} - 1 + \tan^2 \frac{x}{2}} d x\]
\[ = \int_0^\pi \frac{se c^2 \frac{x}{2}}{5 + 7 \tan^2 \frac{x}{2}}dx\]
\[Let, \tan\frac{x}{2} = t, then \frac{1}{2}se c^2 \frac{x}{2} dx = dt\]
Therefore the integral becomes
\[ \int_0^\infty \frac{2dt}{5 + 7 t^2} \]
\[ = \frac{2}{7} \int_0^\infty \frac{dt}{\frac{5}{7} + t^2} \]
\[ = \frac{2}{\sqrt{35}} \left[ \tan^{- 1} \frac{\sqrt{7}t}{\sqrt{5}} \right]_0^\infty \]
\[ = \frac{\pi}{\sqrt{35}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Prove that:
Solve each of the following integral:
Write the coefficient a, b, c of which the value of the integral
Evaluate :
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.