Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_{- 2}^2 \left| 2x + 3 \right| d x\]
\[We\ know\ that\ \left| 2x + 3 \right| = \begin{cases} - \left( 2x + 3 \right) &, &- 2 \leq x \leq - \frac{3}{2}\\\left( 2x + 3 \right)&, &- \frac{3}{2} < x \leq 2\end{cases}\]
\[ \therefore I = \int_{- 2}^\frac{- 3}{2} - \left( 2x + 3 \right) d x + \int_{- \frac{3}{2}}^2 \left( 2x + 3 \right) d x\]
\[ \Rightarrow I = - \left[ x^2 + 3x \right]_{- 2}^\frac{- 3}{2} + \left[ x^2 + 3x \right]_{- \frac{3}{2}}^2 \]
\[ \Rightarrow I = - \frac{9}{4} + \frac{9}{2} + 4 - 6 + 4 + 6 - \frac{9}{4} + \frac{9}{2}\]
\[ \Rightarrow I = \frac{25}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`