Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int_{- 2}^1 \frac{\left| x \right|}{x} d x\]
\[\text{We have}, \]
\[\left| x \right| = \begin{cases}x&,& 0 \leq x \leq 1\\ - x&,& - 2 \leq x < 0\end{cases}\]
\[ \therefore \frac{\left| x \right|}{x} = \begin{cases}1&,& 0 \leq x \leq 1\\ - 1&,& - 2 \leq x < 0\end{cases}\]
\[\text{Therefore}, \]
\[I = \int_{- 2}^0 - 1dx + \int_0^1 1 dx\]
\[ = - \left[ x \right]_{- 2}^0 + \left[ x \right]_0^1 \]
\[ = 0 - 2 + 1 - 0\]
\[ = - 1\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Γ(1) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: