Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
पर्याय
1
2
3
4
MCQ
उत्तर
2
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]
\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[\int_0^1 | x\sin \pi x | dx\]
\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is