मराठी

Evaluate the Following Integral: 1 ∫ − 1 | 2 X + 1 | D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]
बेरीज

उत्तर

\[\int_{- 1}^1 \left| 2x + 1 \right| d x\]
\[We\ know\ that\, \left| 2x + 1 \right| = \begin{cases} - \left( 2x + 1 \right) &, &- 1 \leq x \leq - \frac{1}{2} \\\left( 2x + 1 \right) &, &- \frac{1}{2} < x \leq 1\end{cases}\]
\[ \therefore I = \int_{- 1}^\frac{- 1}{2} - \left( 2x + 1 \right) d x + \int_{- \frac{1}{2}}^1 \left( 2x + 1 \right) d x\]
\[ \Rightarrow I = - \left[ x^2 + x \right]_{- 1}^\frac{- 1}{2} + \left[ x^2 + x \right]_{- \frac{1}{2}}^1 \]
\[ \Rightarrow I = - \frac{1}{4} + \frac{1}{2} + 1 - 1 + 1 + 1 - \frac{1}{4} + \frac{1}{2}\]
\[ \Rightarrow I = \frac{5}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.3 | Q 4 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


`int dx/(e^x + e^(-x))` is equal to ______.


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×