Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int_0^\frac{\pi}{2} \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \right) d x ................(1)\]
\[ = \int_0^\frac{\pi}{2} log\left[ \frac{3 + 5\cos\left( \frac{\pi}{2} - x \right)}{3 + 5\sin\left( \frac{\pi}{2} - x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} log\left( \frac{3 + 5\sin x}{3 + 5\cos x} \right) dx .................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \right) + log\left( \frac{3 + 5\sin x}{3 + 5\cos x} \right) \right] d x\]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \times \frac{3 + 5\sin x}{3 + 5\cos x} \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[Hence\ I = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: