Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
उत्तर
We have,
\[\left| \sin2\pi x \right| = \begin{cases}\left( \sin2\pi x \right),& 0 \leq x \leq \frac{1}{2}\\ - \left( \sin2\pi x \right),& \frac{1}{2} \leq x \leq 1\end{cases}\]
\[ \therefore \int_0^1 \left| \sin2\pi x \right| d x = \int_0^\frac{1}{2} \sin2\pi x dx + \int_\frac{1}{2}^1 - \sin2\pi x dx\]
\[ = \left[ \frac{- \cos2\pi x}{2\pi} \right]_0^\frac{1}{2} + \left[ \frac{\cos2\pi x}{2\pi} \right]_\frac{1}{2}^1 \]
\[ = \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi}\]
\[ = \frac{2}{\pi}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following definite integrals:
If f(2a − x) = −f(x), prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.