Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = \cos x, h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b \cos x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \cos\left( a \right) + \cos\left( a + h \right) + . . . + \cos\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left\{ a + \left( n - 1 \right)\frac{h}{2} \right\}\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}}2\cos\left( a + \frac{b - a}{2} - \frac{h}{2} \right) \sin\left( \frac{b - a}{2} \right) \right] ..............\left(\text{Using }nh = b - a \right)\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\cos\left( \frac{a + b}{2} - \frac{h}{2} \right)\sin\left( \frac{b - a}{2} \right)\]
\[ = 2\cos\left( \frac{a + b}{2} \right)\sin\left( \frac{b - a}{2} \right)\]
\[ = \sin b - \sin a .....................\left[\text{Since, }2\cos A \sin B = \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Solve each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Find: `int logx/(1 + log x)^2 dx`