Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
Solution
\[\int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{1 + \cos x}} d x\]
\[Let 1 + \cos x = t, then - \sin x dx = dt\]
\[When, x \to 0, t \to 2 and x \to \frac{\pi}{2}, t \to 1\]
Therefore, the integral becomes
\[ \int_2^1 \frac{- 1}{\sqrt{t}}dt\]
\[ = \int_1^2 \frac{1}{\sqrt{t}}dt\]
\[ = 2 \left[ \sqrt{t} \right]_1^2 \]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Solve each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`