Advertisements
Advertisements
Question
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Solution
\[\int_0^1 \log\left( 1 + x \right) d x\]
\[ = \int_0^1 \log\left( 1 + x \right) \times 1 d x\]
\[ = \left[ \log\left( 1 + x \right) x \right]_0^1 - \int_0^1 \frac{x}{1 + x}dx\]
\[ = \left[ \log\left( 1 + x \right) x \right]_0^1 - \int_0^1 \left( 1 - \frac{1}{1 + x} \right)dx\]
\[ = \left[ x\log\left( 1 + x \right) \right]_0^1 - \left[ x - \log\left( 1 + x \right) \right]_0^1 \]
\[ = \log2 - 1 + \log2\]
\[ = 2\log2 - 1\]
\[ = \log4 - \log e\]
\[ = \log\frac{4}{e}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.