Advertisements
Advertisements
Question
Evaluate the following:
`Γ (9/2)`
Sum
Solution
`Γ (9/2) = (9 /2 - 1) Γ(9/2 - 1)`
= `7/2 Γ 7/2`
= `7/2 5/2 Γ 5/2`
= `7/2 5/2 3/2 Γ 3/2`
= `7/2 5/2 3/2 1/2 Γ (1/2)`
= `(105sqrt(pi))/16`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Exercise 2.10 [Page 51]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]
\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]
\[\int\limits_0^1 x \tan^{- 1} x\ dx\]
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]
Evaluate each of the following integral:
\[\int_0^\frac{\pi}{4} \tan\ xdx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.