Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} d x . \]
\[Let\ \tan^{- 1} x = t . Then\, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1\, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \sqrt{t} dt\]
\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{2}{3} \left( \frac{\pi}{4} \right)^\frac{3}{2} \]
\[ \Rightarrow I = \frac{1}{12} \pi^\frac{3}{2} \]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.