Advertisements
Advertisements
प्रश्न
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
पर्याय
- \[\frac{1}{3 \ln x}\]
- \[\frac{1}{3 \ln x} - \frac{1}{2 \ln x}\]
(ln x)−1 x (x − 1)
- \[\frac{3 x^2}{\ln x}\]
उत्तर
(ln x)−1 x (x − 1)
Using Newton Leibnitz formula
\[f' (x) = \frac{1}{\log_e x^3}(3 x^2 ) - \frac{1}{\log_e x^2}(2x) \]
\[= \frac{3 x^2}{3\ln x}- \frac{2x}{2\ln x} \]
\[= \frac{x^2}{\ln x} - \frac{x}{\ln x} \]
\[= \frac{1}{\ln x}x(x - 1) \]
\[= {(\ln x)}^{- 1} x(x - 1)\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`