English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 a 2 + Y 2 B 2 = 1 at ( X 1 , Y 1 ) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?

Solution

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]

\[\text { Differentiating both sides w.r.t.x }, \]

\[\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{- 2x}{a^2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x b^2}{y a^2}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- x_1 b^2}{y_1 a^2}\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - y_1 = \frac{- x_1 b^2}{y_1 a^2}\left( x - x_1 \right)\]

\[ \Rightarrow y y_1 a^2 - {y_1}^2 a^2 = - x x_1 b^2 + {x_1}^2 b^2 \]

\[ \Rightarrow x x_1 b^2 + y y_1 a^2 = {x_1}^2 b^2 + {y_1}^2 a^2 . . . \left( 1 \right)\]

\[\text { Since }\left( x_1 , y_1 \right)\text { lies on the given curve.Therefore},\]

\[\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} = 1\]

\[ \Rightarrow \frac{{x_1}^2 b^2 + {y_1}^2 a^2}{a^2 b^2} = 1\]

\[ \Rightarrow {x_1}^2 b^2 + {y_1}^2 a^2 = a^2 b^2 \]

\[\text { Substituting this in (1), we get }\]

\[x x_1 b^2 + y y_1 a^2 = a^2 b^2 \]

\[ {\text { Dividing this by } a}^2 b^2 ,\]

\[\frac{x x_1}{a^2} + \frac{y y_1}{b^2} = 1\]

\[\text { Equation of normal is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - y_1 = \frac{y_1 a^2}{x_1 b^2}\left( x - x_1 \right)\]

\[ \Rightarrow y x_1 b^2 - x_1 y_1 b^2 = x y_1 a^2 - x_1 y_1 a^2 \]

\[ \Rightarrow x y_1 a^2 - y x_1 b^2 = x_1 y_1 a^2 - x_1 y_1 b^2 \]

\[ \Rightarrow x y_1 a^2 - y x_1 b^2 = x_1 y_1 \left( a^2 - b^2 \right)\]

\[\text { Dividing by } x_1 y_1 \]

\[\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 3.12 | Page 27

RELATED QUESTIONS

Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×