English

The Point on the Curve 9y2 = X3, Where the Normal to the Curve Makes Equal Intercepts with the Axes is (A) ( 4 , 8 3 ) (B) ( − 4 , 8 3 ) (C) ( 4 , − 8 3 ) (D) None of These - Mathematics

Advertisements
Advertisements

Question

The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 

Solution

(a) \[\left( 4, \frac{8}{3} \right)\] and (c) \[\left( 4, - \frac{8}{3} \right)\]

Let (x1, y1) be the required point.

\[\text { Since, } \left( x_1 , y_1 \right) \text { lies on the given curve} \]

\[ \therefore 9 {y_1}^2 = {x_1}^3 . . . \left( 1 \right)\]

\[\text { Now }, 9 y^2 = x^3 \]

\[18y \frac{dy}{dx} = 3 x^2 \]

\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2}{18y} = \frac{x^2}{6y}\]

\[\text { Slope of the tangent }  = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{{x_1}^2}{6 y_1}\]

\[\text { Slope of the normal } =\frac{- 1}{\frac{{x_1}^2}{6 y_1}}=\frac{- 6 y_1}{{x_1}^2}\]

\[\text { It is given that the normal makes equal intercepts with the axes }.\]

\[\therefore \text { Slope of the normal } = \pm1\]

\[\text { Now }, \]

\[\frac{- 6 y_1}{{x_1}^2} = \pm 1\]

\[ \Rightarrow \frac{- 6 y_1}{{x_1}^2} = 1 or \frac{- 6 y_1}{{x_1}^2}=-1\]

\[ \Rightarrow y_1 = \frac{- {x_1}^2}{6} \ or \  y_1 = \frac{{x_1}^2}{6} . . . \left( 2 \right)\]

\[\text { Case 1: When }y_1 = \frac{- {x_1}^2}{6}\]

\[\text { From (1), we have}\]

\[9\left( \frac{{x_1}^4}{36} \right) = {x_1}^3 \]

\[ \Rightarrow {x_1}^4 = 4 {x_1}^3 \]

\[ \Rightarrow {x_1}^4 - 4 {x_1}^3 = 0\]

\[ \Rightarrow {x_1}^3 \left( x_1 - 4 \right) = 0\]

\[ \Rightarrow x_1 = 0, 4\]

\[\text { Putting } x_1 = 0 \text { in } \left( 1 \right), \text { we get }, \]

\[9 {y_1}^2 = 0\]

\[ \Rightarrow y_1 = 0\]

\[\text { Putting } x_1 = 4 \text { in } \left( 1 \right), \text { we get }, \]

\[9 {y_1}^2 = 4^3 \]

\[ \Rightarrow y_1 = \pm \frac{8}{3}\]

\[\text { But, the line making the equal intercepts with the coordinate axes can not pass through the origin } . \]

\[\text { So, the points are } \left( 4, \pm \frac{8}{3} \right) \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.5 | Q 25 | Page 43

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


At (0, 0) the curve y = x3 + x


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×