Advertisements
Advertisements
प्रश्न
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
उत्तर
(a) \[\left( 4, \frac{8}{3} \right)\] and (c) \[\left( 4, - \frac{8}{3} \right)\]
Let (x1, y1) be the required point.
\[\text { Since, } \left( x_1 , y_1 \right) \text { lies on the given curve} \]
\[ \therefore 9 {y_1}^2 = {x_1}^3 . . . \left( 1 \right)\]
\[\text { Now }, 9 y^2 = x^3 \]
\[18y \frac{dy}{dx} = 3 x^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2}{18y} = \frac{x^2}{6y}\]
\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{{x_1}^2}{6 y_1}\]
\[\text { Slope of the normal } =\frac{- 1}{\frac{{x_1}^2}{6 y_1}}=\frac{- 6 y_1}{{x_1}^2}\]
\[\text { It is given that the normal makes equal intercepts with the axes }.\]
\[\therefore \text { Slope of the normal } = \pm1\]
\[\text { Now }, \]
\[\frac{- 6 y_1}{{x_1}^2} = \pm 1\]
\[ \Rightarrow \frac{- 6 y_1}{{x_1}^2} = 1 or \frac{- 6 y_1}{{x_1}^2}=-1\]
\[ \Rightarrow y_1 = \frac{- {x_1}^2}{6} \ or \ y_1 = \frac{{x_1}^2}{6} . . . \left( 2 \right)\]
\[\text { Case 1: When }y_1 = \frac{- {x_1}^2}{6}\]
\[\text { From (1), we have}\]
\[9\left( \frac{{x_1}^4}{36} \right) = {x_1}^3 \]
\[ \Rightarrow {x_1}^4 = 4 {x_1}^3 \]
\[ \Rightarrow {x_1}^4 - 4 {x_1}^3 = 0\]
\[ \Rightarrow {x_1}^3 \left( x_1 - 4 \right) = 0\]
\[ \Rightarrow x_1 = 0, 4\]
\[\text { Putting } x_1 = 0 \text { in } \left( 1 \right), \text { we get }, \]
\[9 {y_1}^2 = 0\]
\[ \Rightarrow y_1 = 0\]
\[\text { Putting } x_1 = 4 \text { in } \left( 1 \right), \text { we get }, \]
\[9 {y_1}^2 = 4^3 \]
\[ \Rightarrow y_1 = \pm \frac{8}{3}\]
\[\text { But, the line making the equal intercepts with the coordinate axes can not pass through the origin } . \]
\[\text { So, the points are } \left( 4, \pm \frac{8}{3} \right) \]
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Which of the following represent the slope of normal?
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.