English

Show that the line abxa+yb = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y - Mathematics

Advertisements
Advertisements

Question

Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y

Sum

Solution

Given that y = b · e– x/a, the equation of curve and `x/"a" + y/"b"` = 1, the equation of line.

Let the coordinates of the point where the curve intersects the y-axis be (0, y1)

Now differentiating y = b · e– x/a both sides w.r.t. x, we get

`"dy"/"dx" = "b" * "e"^((-x)/"a") (- 1/"a")`

= `- "b"/"a" * "e"^((-x)/"a")`

So, the slope of the tangent, m1 = `- "b"/"a" * "e"^((-x)/"a")`

Differentiating `x/"a" + y/"b"` = 1 both sides w.r.t. x, we get

`1/"a" + 1/"b" * "dy"/"dx"` = 0

So, the slope of the line, m2 = ` (-"b")/"a"`.

If the line touches the curve, then m1 = m2

⇒ `(-"b")/"a" * "e"^((-x)/"a") = (-"b")/"a"`

⇒ `"e"^((-x)/"a")` = 1

⇒ `(-x)/"a" log "e"` = log 1  .....(Taking log on both sides)

⇒ `(-x)/"a"` = 0

⇒ x = 0

Putting x = 0 in equation y = `"b" * "e"^((-x)/"a")`

⇒ y = b · e0 = b

Hence, the given equation of curve intersects at (0, b) i.e. on y-axis.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 136]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 19 | Page 136

RELATED QUESTIONS

Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


The curve y = `x^(1/5)` has at (0, 0) ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×