हिंदी

The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.

विकल्प

  • x + 5y = 2

  • x – 5y = 2

  • 5x – y = 2

  • 5x + y = 2

MCQ
रिक्त स्थान भरें

उत्तर

The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is x + 5y = 2.

Explanation:

Given that y(1 + x2) = 2 – x    ...(i)

If it cuts x-axis, then y-coordinate is 0.

∴ 0(1 + x2) = 2 – x

⇒ x = 2

Put x = 2 in equation (i)

y(1 + 4) = 2 – 2

⇒ y(5) = 0

⇒ y = 0

Point of contact = (2, 0)

Differentiating equation (i) w.r.t. x, we have

`y xx 2x + (1 + x^2)  "dy"/"dx"` = – 1

⇒ `2xy + (1 + x^2) "dy"/"dx"` = – 1

⇒ `(1 + x^2) "dy"/"dx"` = – 1 – 2xy

∴ `"dy"/"dx" = (-(1 + 2xy))/((1 + x^2))`

⇒ `"dy"/"dx"_(2, 0) = (-1)/((1 + 4)) = (-1)/5`

Equation of tangent is y – 0 = `- 1/5 (x - 2)`

⇒ 5y = – x + 2

⇒ x + 5y = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 41 | पृष्ठ १३९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


Which of the following represent the slope of normal?


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×