Advertisements
Advertisements
प्रश्न
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
उत्तर
The two circles intersect orthogonally if the angle between the tangents drawn to the two circles at the point of their intersection is 90°.
Equation of the two circles are given as
2x = y2 ......(i)
And 2xy = k ......(ii)
Differentiating eq. (i) and (ii) w.r.t. x, we get
2.1 = `2y * "dy"/"dx"`
⇒ `"dy"/"dx" = 1/y`
⇒ m1 = `1/y` ......(m1 = slope of the tangent)
⇒ 2xy = k
⇒ `2[x * "dy"/"dx" + y * 1]` = 0
∴ `"dy"/"dx" = - y/x`
⇒ m2 = `- y/x` ......[m2 = slope of the other tangent]
If the two tangents are perpendicular to each other,
Then m1 × m2 = – 1
⇒ `1/y xx (- y/x)` = – 1
⇒ `1/x` = 1
⇒ x = 1
Now solving 2x = y2 ......[From (i)]
And 2xy = k .....[From (ii)]
From equation (ii)
y = `"k"/(2x)`
Putting the value of y in equation (i)
2x = `("k"/(2x))^2`
⇒ 2x = `"k"^2/(4x^2)`
⇒ 8x3 = k2
⇒ 8(1)3 = k2
⇒ 8 = k2
Hence, the required condition is k2 = 8.
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y2 = x and x2 = y.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.