Advertisements
Advertisements
प्रश्न
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
उत्तर
The two circles intersect orthogonally if the angle between the tangents drawn to the two circles at the point of their intersection is 90°.
Equation of the two circles are given as
2x = y2 ......(i)
And 2xy = k ......(ii)
Differentiating eq. (i) and (ii) w.r.t. x, we get
2.1 = `2y * "dy"/"dx"`
⇒ `"dy"/"dx" = 1/y`
⇒ m1 = `1/y` ......(m1 = slope of the tangent)
⇒ 2xy = k
⇒ `2[x * "dy"/"dx" + y * 1]` = 0
∴ `"dy"/"dx" = - y/x`
⇒ m2 = `- y/x` ......[m2 = slope of the other tangent]
If the two tangents are perpendicular to each other,
Then m1 × m2 = – 1
⇒ `1/y xx (- y/x)` = – 1
⇒ `1/x` = 1
⇒ x = 1
Now solving 2x = y2 ......[From (i)]
And 2xy = k .....[From (ii)]
From equation (ii)
y = `"k"/(2x)`
Putting the value of y in equation (i)
2x = `("k"/(2x))^2`
⇒ 2x = `"k"^2/(4x^2)`
⇒ 8x3 = k2
⇒ 8(1)3 = k2
⇒ 8 = k2
Hence, the required condition is k2 = 8.
APPEARS IN
संबंधित प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y2 = x and x2 = y.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
The curve y = `x^(1/5)` has at (0, 0) ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Let `y = f(x)` be the equation of the curve, then equation of normal is
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3