मराठी

Find the co-ordinates of the point on the curve x+y = 4 at which tangent is equally inclined to the axes - Mathematics

Advertisements
Advertisements

प्रश्न

Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes

बेरीज

उत्तर

Equation of curve is given by `sqrt(x) + sqrt(y)` = 4 

Let (x1, y1) be the required point on the curve

∴  `sqrt(x)_1 + sqrt(y)_1` = 4

Differentiating both sides w.r.t. x1, we get

`"d"/("dx"_1) sqrt(x_1) + "d"/("dx"_1) sqrt(y_1) = "d"/("dx"_1) (4)`

⇒ `1/(2sqrt(x_1)) + 1/(2sqrt(y_1)) * ("d"y_1)/("dx"_1)` = 0

⇒ `1/sqrt(x_1) + 1/sqrt(y_1) * ("dy"_1)/("dx"_1)` = 0

⇒ `("dy"_1)/("d"x_1) = - sqrt(y_1)/sqrt(x_1)`  .....(i)

Since the tangent to the given curve at (x1, y1) is equally inclined to the axes.

∴ Slope of the tangent `("dy"_1)/("dx"_1) = +- tan  pi/4` = ±1

So, from equation (i) we get

`- sqrt(y_1)/sqrt(x_1)` = ±1

Squaring both sides, we get

`(y_1)/(x_1)` = 1

⇒ y1 = x1

Putting the value of y1 in the given equation of the curve.

`sqrt(x_1) + sqrt(y_1)` = 4

⇒ `sqrt(x_1) + sqrt(x_1)` = 4

⇒ `2sqrt(x_1)` = 4

⇒ `sqrt(x_1)` = 2

⇒ x1 = 4

Since y1 = x1

∴ y1 = 4

Hence, the required point is (4, 4).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 14 | पृष्ठ १३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The curve y = `x^(1/5)` has at (0, 0) ______.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×