Advertisements
Advertisements
प्रश्न
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
उत्तर
Equation of curve is given by `sqrt(x) + sqrt(y)` = 4
Let (x1, y1) be the required point on the curve
∴ `sqrt(x)_1 + sqrt(y)_1` = 4
Differentiating both sides w.r.t. x1, we get
`"d"/("dx"_1) sqrt(x_1) + "d"/("dx"_1) sqrt(y_1) = "d"/("dx"_1) (4)`
⇒ `1/(2sqrt(x_1)) + 1/(2sqrt(y_1)) * ("d"y_1)/("dx"_1)` = 0
⇒ `1/sqrt(x_1) + 1/sqrt(y_1) * ("dy"_1)/("dx"_1)` = 0
⇒ `("dy"_1)/("d"x_1) = - sqrt(y_1)/sqrt(x_1)` .....(i)
Since the tangent to the given curve at (x1, y1) is equally inclined to the axes.
∴ Slope of the tangent `("dy"_1)/("dx"_1) = +- tan pi/4` = ±1
So, from equation (i) we get
`- sqrt(y_1)/sqrt(x_1)` = ±1
Squaring both sides, we get
`(y_1)/(x_1)` = 1
⇒ y1 = x1
Putting the value of y1 in the given equation of the curve.
`sqrt(x_1) + sqrt(y_1)` = 4
⇒ `sqrt(x_1) + sqrt(x_1)` = 4
⇒ `2sqrt(x_1)` = 4
⇒ `sqrt(x_1)` = 2
⇒ x1 = 4
Since y1 = x1
∴ y1 = 4
Hence, the required point is (4, 4).
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The curve y = `x^(1/5)` has at (0, 0) ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to