Advertisements
Advertisements
प्रश्न
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
उत्तर
Let (x1, y1) be the required point.
Given:
\[y = 2x - 3\]
\[ \therefore \text { Slope of the line }= \frac{dy}{dx} = 2\]
\[y = x^3 - 2 x^2 - 2x\]
\[\text { Since } \left( x_1 y_1 \right) \text { lies on curve }, y_1 = {x_1}^3 - 2 {x_1}^2 - 2 x_1 . . . \left( 1 \right)\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = 3 {x_1}^2 - 4 x_1 - 2\]
\[\text { It is given that the tangent and the given line are parallel }.\]
\[\therefore \text { Slope of the tangent = Slope of the given line }\]
\[3 {x_1}^2 - 4 x_1 - 2 = 2\]
\[ \Rightarrow 3 {x_1}^2 - 4 x_1 - 4 = 0\]
\[ \Rightarrow 3 {x_1}^2 - 6 x_1 + 2 x_1 - 4 = 0\]
\[ \Rightarrow 3 x_1 \left( x_1 - 2 \right) + 2 \left( x_1 - 2 \right) = 0\]
\[ \Rightarrow \left( x_1 - 2 \right) \left( 3 x_1 + 2 \right) = 0\]
\[ \Rightarrow x_1 = 2 or x_1 = \frac{- 2}{3}\]
\[\text { Case1 }\]
\[\text { When }x_1 = 2\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get}\]
\[ y_1 = 8 - 8 - 4 = - 4\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 2, - 4 \right)\]
\[\text { Case 2}\]
\[\text { When }x_1 = \frac{- 2}{3}\]
\[\text { On substituting the value of } x_1 \text { in eq. (1), we get }\]
\[ y_1 = \frac{- 8}{27} - \frac{8}{9} + \frac{4}{3} = \frac{- 8 - 24 + 36}{27} = \frac{4}{27}\]
\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{- 2}{3}, \frac{4}{27} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.