Advertisements
Advertisements
प्रश्न
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
उत्तर
\[\text { Given curves are},\]
\[ x^2 + y^2 = 2x . . . \left( 1 \right)\]
\[ y^2 = x . . . \left( 2 \right)\]
\[\text { From these two equations we get }\]
\[ x^2 + x = 2x\]
\[ \Rightarrow x^2 - x = 0\]
\[ \Rightarrow x \left( x - 1 \right) = 0\]
\[ \Rightarrow x = 0 orx = 1\]
\[\text { Substituting the values of x in } \left( 2 \right) \text { we get }, \]
\[y = 0 \text { or} y=\pm1 \]
\[\therefore\left( x, y \right) =\left( 0, 0 \right),\left( 1, 1 \right),\left( 1, - 1 \right)\]
\[\text { Differentiating (1) w.r.t.x,we get},\]
\[2x + 2y\frac{dy}{dx} = 2\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1 - x}{y} . . . \left( 3 \right)\]
\[\text { Differentiating (2) w.r.t. x,we get },\]
\[2y \frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y} . . . \left( 4 \right)\]
\[\text { Case }-1: \left( x, y \right) =\left( 0, 0 \right)\]
\[\text { From } \left( 3 \right) \text { we get, m_1 is undefined }. \]
\[ \therefore \text { We can not find } \theta\]
\[\text { Case } -2:Let \left( x, y \right) =\left( 1, 1 \right)\]
\[\text { From } \left( 3 \right) \text { we get,} m_1 = 0\]
\[\text { From } \left( 4 \right) \text { we get,} m_2 = \frac{1}{2}\]
\[\text { Now }, \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{0 - \frac{1}{2}}{1 + 0} \right| = \frac{1}{2}\]
\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{1}{2} \right)\]
\[\text {Case } -3:\text { Let } \left( x, y \right) =\left( 1, - 1 \right)\]
\[\text { From } \left( 3 \right)\text { we get }, m_1 = 0\]
\[\text { From } \left( 4 \right) \text { we get,} m_2 = \frac{- 1}{2}\]
\[\text { Now, } \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{0 + \frac{1}{2}}{1} \right| = \frac{1}{2}\]
\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{1}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
The curve y = `x^(1/5)` has at (0, 0) ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
At (0, 0) the curve y = x3 + x
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.