हिंदी

Find the Angle of Intersection of the Following Curve X2 + Y2 = 2x and Y2 = X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?

योग

उत्तर

\[\text {  Given curves are},\]

\[ x^2 + y^2 = 2x . . . \left( 1 \right)\]

\[ y^2 = x . . . \left( 2 \right)\]

\[\text { From these two equations we get }\]

\[ x^2 + x = 2x\]

\[ \Rightarrow x^2 - x = 0\]

\[ \Rightarrow x \left( x - 1 \right) = 0\]

\[ \Rightarrow x = 0 orx = 1\]

\[\text { Substituting the values of x in } \left( 2 \right) \text { we get }, \]

\[y = 0 \text { or} y=\pm1 \]

\[\therefore\left( x, y \right) =\left( 0, 0 \right),\left( 1, 1 \right),\left( 1, - 1 \right)\]

\[\text { Differentiating (1) w.r.t.x,we get},\]

\[2x + 2y\frac{dy}{dx} = 2\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1 - x}{y} . . . \left( 3 \right)\]

\[\text { Differentiating (2) w.r.t. x,we get },\]

\[2y \frac{dy}{dx} = 1\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y} . . . \left( 4 \right)\]

\[\text { Case }-1: \left( x, y \right) =\left( 0, 0 \right)\]

\[\text { From } \left( 3 \right) \text { we get, m_1 is undefined }. \]

\[ \therefore \text { We can not find } \theta\]

\[\text { Case } -2:Let \left( x, y \right) =\left( 1, 1 \right)\]

\[\text { From } \left( 3 \right) \text { we get,} m_1 = 0\]

\[\text { From } \left( 4 \right) \text { we get,} m_2 = \frac{1}{2}\]

\[\text { Now }, \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{0 - \frac{1}{2}}{1 + 0} \right| = \frac{1}{2}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{1}{2} \right)\]

\[\text {Case } -3:\text { Let } \left( x, y \right) =\left( 1, - 1 \right)\]

\[\text { From }  \left( 3 \right)\text { we get }, m_1 = 0\]

\[\text { From } \left( 4 \right) \text { we get,} m_2 = \frac{- 1}{2}\]

\[\text { Now, } \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{0 + \frac{1}{2}}{1} \right| = \frac{1}{2}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{1}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 1.8 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


The curve y = `x^(1/5)` has at (0, 0) ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


At (0, 0) the curve y = x3 + x


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×