हिंदी

Find a Point on the Curve Y = X3 − 3x Where the Tangent is Parallel to the Chord Joining (1, −2) and (2, 2) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?

उत्तर

Let (x1, y1) be the required point.

\[\text { Slope of the chord } = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 + 2}{2 - 1} = 4\]

\[y = x^3 - 3x\]

\[ \Rightarrow \frac{dy}{dx} = 3 x^2 - 3 . . . \left( 1 \right)\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) {{=3x}_1}^2 -3\]

\[\text { It is given that the tangent and the chord are parallel } .\]

\[\therefore \text { Slope of the tangent } = \text { Slope of the chord }\]

\[ \Rightarrow 3 {x_1}^2 - 3 = 4\]

\[ \Rightarrow 3 {x_1}^2 = 7\]

\[ \Rightarrow {x_1}^2 = \frac{7}{3}\]

\[ \Rightarrow x_1 = \pm \sqrt{\frac{7}{3}} = \sqrt{\frac{7}{3}} or - \sqrt{\frac{7}{3}}\]

\[\text { Case }1\]

\[\text { When }x_1 = \sqrt{\frac{7}{3}}\]

\[\text { On substituting this in eq. (1), we get }\]

\[ y_1 = \left( \sqrt{\frac{7}{3}} \right)^3 - 3\left( \sqrt{\frac{7}{3}} \right) = \frac{7}{3}\sqrt{\frac{7}{3}} - 3\sqrt{\frac{7}{3}} = \frac{- 2}{3}\sqrt{\frac{7}{3}} \]

\[ \therefore \left( x_1 , y_1 \right) = \left( \sqrt{\frac{7}{3}}, \frac{- 2}{3}\sqrt{\frac{7}{3}} \right)\]

\[\text { Case }2\]

\[\text { When }x_1 = - \sqrt{\frac{7}{3}}\]

\[\text { On substituting this in eq. (1), we get }\]

\[ y_1 = \left( - \sqrt{\frac{7}{3}} \right)^3 - 3\left( - \sqrt{\frac{7}{3}} \right) = \frac{- 7}{3}\sqrt{\frac{7}{3}} + 3\sqrt{\frac{7}{3}} = \frac{2}{3}\sqrt{\frac{7}{3}} \]

\[ \therefore \left( x_1 , y_1 \right) = \left( - \sqrt{\frac{7}{3}}, \frac{2}{3}\sqrt{\frac{7}{3}} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.1 | Q 4 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×