हिंदी

At What Point the Slope of the Tangent to the Curve X2 + Y2 − 2x − 3 = 0 is Zero - Mathematics

Advertisements
Advertisements

प्रश्न

At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero

विकल्प

  • (3, 0), (−1, 0)

  • (3, 0), (1, 2)

  • (−1, 0), (1, 2)

  • (1, 2), (1, −2)

MCQ

उत्तर

(1, 2), (1, −2)

 

Let (x1, y1) be the required point.

\[\text { Since, the point lie on the curve } . \]

\[\text { Hence }, {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0 . . . \left( 1 \right)\]

\[\text { Now }, x^2 + y^2 - 2x - 3 = 0 \]

\[ \Rightarrow 2x + 2y \frac{dy}{dx} - 2 = 0\]

\[ \therefore \frac{dy}{dx} = \frac{2 - 2x}{2y} = \frac{1 - x}{y}\]

\[\text { Now}, \]

\[\text{ Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1 - x_1}{y_1}\]

\[\text { Slope of the tangent }=0 ...............(\text {Given })\]

\[ \therefore \frac{1 - x_1}{y_1} = 0\]

\[ \Rightarrow 1 - x_1 = 0\]

\[ \Rightarrow x_1 = 1\]

\[\text { From (1), we get }\]

\[ {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0\]

\[ \Rightarrow 1 + {y_1}^2 - 2 - 3 = 0\]

\[ \Rightarrow {y_1}^2 - 4 = 0\]

\[ \Rightarrow y_1 = \pm 2\]

\[\text { So, the points are }\left( 1, 2 \right)\text { and }\left( 1, - 2 \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 13 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×