Advertisements
Advertisements
प्रश्न
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
विकल्प
(3, 0), (−1, 0)
(3, 0), (1, 2)
(−1, 0), (1, 2)
(1, 2), (1, −2)
उत्तर
(1, 2), (1, −2)
Let (x1, y1) be the required point.
\[\text { Since, the point lie on the curve } . \]
\[\text { Hence }, {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0 . . . \left( 1 \right)\]
\[\text { Now }, x^2 + y^2 - 2x - 3 = 0 \]
\[ \Rightarrow 2x + 2y \frac{dy}{dx} - 2 = 0\]
\[ \therefore \frac{dy}{dx} = \frac{2 - 2x}{2y} = \frac{1 - x}{y}\]
\[\text { Now}, \]
\[\text{ Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1 - x_1}{y_1}\]
\[\text { Slope of the tangent }=0 ...............(\text {Given })\]
\[ \therefore \frac{1 - x_1}{y_1} = 0\]
\[ \Rightarrow 1 - x_1 = 0\]
\[ \Rightarrow x_1 = 1\]
\[\text { From (1), we get }\]
\[ {x_1}^2 + {y_1}^2 - 2 x_1 - 3 = 0\]
\[ \Rightarrow 1 + {y_1}^2 - 2 - 3 = 0\]
\[ \Rightarrow {y_1}^2 - 4 = 0\]
\[ \Rightarrow y_1 = \pm 2\]
\[\text { So, the points are }\left( 1, 2 \right)\text { and }\left( 1, - 2 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.