Advertisements
Advertisements
प्रश्न
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
उत्तर
The given curve is `x^2/"a"^2 + y^2/"b"^2` = 1 ....(i)
And the straight line x cos a + y sin a = p
Differentiating equation (i) w.r.t. x, we get
`1/"a"^2 * 2x + 1/"b"^2 * 2y * "dy"/"dx"` = 0
⇒ `x/"a"^2 + y/"b"^2 "dy"/"dx"` = 0
⇒ `"dy"/"dx" = - "b"^2/"a"^2 * x/y`
So the slope of the curve = `(-"b"^2)/"a"^2 * x/y`
Now differentiating eq. (ii) w.r.t. x, we have
`cos alpha + sin alpha * "dy"/"dx"` = 0
∴ `"dy"/"dx" = (- cos alpha)/sinalpha`
= `- cot alpha`
So, the slope of the straight line = `- cot alpha`
If the line is the tangent to the curve, then
`(-"b"^2)/"a"^2 * x/y = - cot alpha`
⇒ `x/y = "a"^2/"b"^2 * cot alpha`
⇒ x = `"a"^2/"b"^2 cot alpha * y`
Now from equation (ii) we have x cos a + y sin a = p
⇒ `"a"^2/"b"^2 * cot alpha * y * cos alpha + y sin alpha` = p
⇒ `"a"^2 cot alpha * cos alpha y + "b"^2 sin alpha y = "b"^2"p"`
⇒ `"a"^2 cosalpha/sinalpha * cos alpha y + "b"^2 sin alpha y = "b"^2"p"`
⇒ `"a"^2 cos^2 alpha y + "b"^2 sin^2 alpha y = "b"^2 sin alpha "p"`
⇒ `"a"^2 cos^2 alpha + "b"^2 sin^2 alpha = "b"^2/y * sin alpha * "p"`
⇒ `"a"^2cos^2alpha + "b"^2 sin^2alpha = "p" * "p"` ....`[because "b"^2/y sin alpha = "p"]`
Hence, a2 cos2α + b2 sin2α = p2
Alternate method:
We know that y = mx + c will touch the ellipse
`x^2/"a"^2 + y^2/"b"^2` = 1 if c2 = a2m2 + b2
Here equation of straight line is x cos α + y sin α = p and that of ellipse is `x^2/"a"^2 + y^2/"b"^2` = 1
x cos α + y sin α = p
⇒ y sin α= – x cos α + p
⇒ y = `- x cosalpha/sinalpha + "P"/sinalpha`
⇒ y = `- x cot alpha + "P"/sinalpha`
Comparing with y = mx + c, we get
m = `- cot alpha` and c = `"P"/sinalpha`
So, according to the condition, we get c2 = a2m2 + b2
`"P"^2/(sin^2alpha) = "a"^2(- cot alpha)^2 + "b"^2`
⇒ `"P"^2/(sin^2alpha) = ("a"^2 cos^2alpha)/(sin^2alpha) + "b"^2`
⇒ p2 = a2 cos2α + b2 sin2α
Hence, a2 cos2α + b2 sin2α = p2
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3