Advertisements
Advertisements
प्रश्न
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
उत्तर
`The equation of the given curve is y = x2 − 2x + 7
On differentiating with respect to x, we get:
`"dy"/"dx" = 2x - 2`
The equation of the line is 5y − 15x = 13.
5y − 15x = 13
⇒ `"y" = 3x + 13/5`
This is of the form y = mx + c.
∴ Slope of the line = 3
If a tangent is perpendicular to the line 5y − 15x = 13, then the slope of the tangent is
`(-1)/("slope of the line") = (-1)/3`
⇒ 2x - 2 = `(-1)/3`
⇒ 2x = `(-1)/3 + 2`
⇒ 2x = `5/3`
⇒ x = `5/6`
Now, x = `5/6`
`=> "y" = 25/36 - 10/6 + 7 = (25 - 60 + 252)/36 = 217/36`
Thus, the equation of the tangent passing through `(5/6, 217/36)` is given by,
`"y" - 217/36 = -1/3 (x - 5/6)`
`=> (36"y" - 217)/36 = (- 1)/18 (6x - 5)`
⇒ 36y - 217 = -2(6x - 5)
⇒ 36y - 217 = -12x + 10
⇒ 36y + 12x - 227 = 0
Hence, the equation of the tangent line to the given curve (which is perpendicular to line 5y - 15x = 13) is 36y + 12x - 227 = 0.
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
At (0, 0) the curve y = x3 + x
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Let `y = f(x)` be the equation of the curve, then equation of normal is
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.