Advertisements
Advertisements
प्रश्न
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
उत्तर
The slope of the x-axis is 0.
Now, let (x1, y1) be the required point.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence,} \frac{{x_1}^2}{4} + \frac{{y_1}^2}{25} = 1 . . . \left( 1 \right) \]
\[\text { Now }, \frac{x^2}{4} + \frac{y^2}{25} = 1 \]
\[ \therefore \frac{2x}{4} + \frac{2y}{25}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{25}\frac{dy}{dx} = \frac{- x}{2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 25x}{4y}\]
\[\text { Now }, \]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 25 x_1}{4 y_1}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)=\text { Slope of thex-axis [Given] }\]
\[ \therefore \frac{- 25 x_1}{4 y_1} = 0\]
\[ \Rightarrow x_1 = 0\]
\[\text { Also }, \]
\[0 + \frac{{y_1}^2}{25} = 1 [\text { From eq.} (1)]\]
\[ \Rightarrow {y_1}^2 = 25\]
\[ \Rightarrow y_1 = \pm 5\]
\[\text { Thus, the required points are }\left( 0, 5 \right)\text { and }\left( 0, - 5 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The curve y = `x^(1/5)` has at (0, 0) ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3