Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
उत्तर
\[x = \frac{2a t^2}{1 + t^2} \text { and y} = \frac{2a t^3}{1 + t^2}\]
\[\frac{dx}{dt} = \frac{\left( 1 + t^2 \right)\left( 4at \right) - 2a t^2 \left( 2t \right)}{\left( 1 + t^2 \right)^2} = \frac{4at}{\left( 1 + t^2 \right)^2}\]
\[ \text { and }\frac{dy}{dt} = \frac{\left( 1 + t^2 \right)6a t^2 - 2a t^3 \left( 2t \right)}{\left( 1 + t^2 \right)^2} = \frac{6a t^2 + 2a t^4}{\left( 1 + t^2 \right)^2}\]
\[\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{6a t^2 + 2a t^4}{\left( 1 + t^2 \right)^2}}{\frac{4at}{\left( 1 + t^2 \right)^2}} = \frac{6a t^2 + 2a t^4}{4at}\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_{t = \frac{1}{2}} =\frac{\frac{3a}{2} + \frac{a}{8}}{2a}=\frac{\frac{12a + a}{8}}{2a}=\frac{13a}{8}\times\frac{1}{2a}=\frac{13}{16}\]
\[\text { Now, }\left( x_1 , y_1 \right) = \left( \frac{2a t^2}{1 + t^2}, \frac{2a t^3}{1 + t^2} \right) = \left( \frac{\frac{a}{2}}{1 + \frac{1}{4}}, \frac{\frac{a}{4}}{1 + \frac{1}{4}} \right) = \left( \frac{\frac{a}{2}}{\frac{5}{4}}, \frac{\frac{a}{4}}{\frac{5}{4}} \right) = \left( \frac{2a}{5}, \frac{a}{5} \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{a}{5} = \frac{13}{16}\left( x - \frac{2a}{5} \right)\]
\[ \Rightarrow \frac{5y - a}{5} = \frac{13}{16}\left( \frac{5x - 2a}{5} \right)\]
\[ \Rightarrow 5y - a = \frac{13}{16}\left( 5x - 2a \right)\]
\[ \Rightarrow 80y - 16a = 65x - 26a\]
\[ \Rightarrow 65x - 80y - 10a = 0\]
\[ \Rightarrow 13x - 16y - 2a = 0\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - \frac{a}{5} = \frac{- 16}{13} \left( x - \frac{2a}{5} \right)\]
\[ \Rightarrow \frac{5y - a}{5} = \frac{- 16}{13}\left( \frac{5x - 2a}{5} \right)\]
\[ \Rightarrow 5y - a = \frac{- 16}{13}\left( 5x - 2a \right)\]
\[ \Rightarrow 65y - 13a = - 80x + 32a\]
\[ \Rightarrow 80x + 65y - 45a = 0\]
\[ \Rightarrow 16x + 13y - 9a = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the angle of intersection of the curves y2 = x and x2 = y.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3