Advertisements
Advertisements
प्रश्न
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
उत्तर
\[\text { We have, } \]
\[x\cos\alpha + y\sin\alpha = p . . . . . \left( i \right)\]
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 . . . . . \left( ii \right)\]
\[\text { As, the straight line } \left( i \right) \text { touches the curve } \left( ii \right) . \]
\[\text { So, the straight line } \left( i \right) \text { is tangent to the curve } \left( ii \right) . \]
\[\text { Also, the slope of the straight line,} m = \frac{- \cos\alpha}{\sin\alpha}\]
\[\text { And, the slope of the tangent to the curve } = \frac{dy}{dx} = \frac{b^2}{a^2} \times \frac{x}{y}\]
\[\text { So,} \frac{b^2}{a^2} \times \frac{x}{y} = \frac{- \cos\alpha}{\sin\alpha}\]
\[ \Rightarrow x b^2 \sin\alpha = - y a^2 \cos\alpha\]
\[ \Rightarrow x = \frac{- y a^2 \cos\alpha}{b^2 \sin\alpha} . . . . . \left( iii \right)\]
\[\text
{ Substituting the value of x in } \left( i \right), \text { we get }\]
\[x\cos\alpha + y\sin\alpha = p\]
\[ \Rightarrow \frac{- y a^2 \cos^2 \alpha}{b^2 \sin\alpha} + y\sin\alpha = p\]
\[ \Rightarrow \frac{- y a^2 \cos^2 \alpha + y b^2 \sin\alpha}{b^2 \sin\alpha} = p\]
\[ \Rightarrow y\left( - a^2 \cos^2 \alpha + b^2 \sin\alpha \right) = p b^2 \sin\alpha\]
\[ \Rightarrow y = \frac{p b^2 \sin\alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)}\]
\[\text { So, from } \left( iii \right), \text { we get }\]
\[x = \frac{- y a^2 \cos\alpha}{b^2 \sin\alpha}\]
\[ = \frac{- y a^2 \cos\alpha}{b^2 \sin\alpha}\]
\[ = \frac{- a^2 \cos\alpha}{b^2 \sin\alpha} \times \frac{p b^2 \sin\alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)}\]
\[ \Rightarrow x = \frac{- p a^2 \cos\alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)}\]
\[\text { Substituting the values x and y in } \left( ii \right), \text { we get }\]
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]
\[ \Rightarrow \frac{1}{a^2} \times \left( \frac{- p a^2 \cos\alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)} \right)^2 - \frac{1}{b^2} \times \left( \frac{p b^2 \sin\alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)} \right)^2 = 1\]
\[ \Rightarrow \frac{p^2 a^2 \cos^2 \alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)^2} - \frac{p^2 b^2 \sin^2 \alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)^2} = 1\]
\[ \Rightarrow \frac{p^2 a^2 \cos^2 \alpha - p^2 b^2 \sin^2 \alpha}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)^2} = 1\]
\[ \Rightarrow \frac{p^2 \left( a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \right)}{\left( b^2 \sin\alpha - a^2 \cos^2 \alpha \right)^2} = 1\]
\[ \Rightarrow \frac{p^2 \left( a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \right)}{\left( a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \right)^2} = 1\]
\[ \Rightarrow \frac{p^2}{\left( a^2 \cos^2 \alpha - b^2 \sin^2 \alpha \right)} = 1\]
\[ \therefore p^2 = a^2 \cos^2 \alpha - b^2 \sin^2 \alpha\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.