हिंदी

The Point on the Curve Y2 = X Where Tangent Makes 45° Angle with X-axis is - Mathematics

Advertisements
Advertisements

प्रश्न

The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .

विकल्प

  • (1/2, 1/4)

  • (1/4, 1/2)

  • (4, 2)

  • (1, 1)

MCQ

उत्तर

(1/4, 1/2)

Let the required point be (x1, y1).

The tangent makes an angle of 45o with the x-axis.

∴ Slope of the tangent = tan 45o = 1

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence, } {y_1}^2 = x_1 \]

\[\text { Now,} y^2 = x\]

\[ \Rightarrow 2y\frac{dy}{dx} = 1\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y}\]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1}{2 y_1}\]

\[\text { Given }:\]

\[\frac{1}{2 y_1} = 1\]

\[ \Rightarrow 2 y_1 = 1\]

\[ \Rightarrow y_1 = \frac{1}{2}\]

\[\text{ Now,} \]

\[ x_1 = {y_1}^2 = \left( \frac{1}{2} \right)^2 = \frac{1}{4}\]

\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{1}{4}, \frac{1}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 4 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


At (0, 0) the curve y = x3 + x


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×