हिंदी

Prove that the curves xy = 4 and x2 + y2 = 8 touch each other. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.

योग

उत्तर

Given circles are xy = 4   .....(i)

And x2 + y2 = 8   .....(ii)

Differentiating equation (i) w.r.t., x

`x * "dy"/"dx" + y * 1` = 0

⇒ `"dy"/"dx" = - y/x`

⇒ m1 = `- y/x`  .....(iii)

Where, m1 is the slope of the tangent to the curve.

Differentiating equation (ii) w.r.t. x

`2x + 2y * "dy"/"dx"` = 0

⇒ `"dy"/"dx" = - x/y`

⇒ m2 = `- x/y`

Where, m2 is the slope of the tangent to the circle.

To find the point of contact of the two circles

m1 = m2

⇒ `- y/x = - x/y`

⇒  x2 = y2

Putting the value of y2 in equation (ii)

x2 + x2 = 8

⇒ 2x2 = 8

⇒ x2 = 4

∴ x = ± 2

∵ x2 = y2

⇒ y = ± 2

∴ The point of contact of the two circles are (2, 2) and (– 2, 2).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 13 | पृष्ठ १३६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


At (0, 0) the curve y = x3 + x


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×