Advertisements
Advertisements
प्रश्न
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
उत्तर
Given circles are xy = 4 .....(i)
And x2 + y2 = 8 .....(ii)
Differentiating equation (i) w.r.t., x
`x * "dy"/"dx" + y * 1` = 0
⇒ `"dy"/"dx" = - y/x`
⇒ m1 = `- y/x` .....(iii)
Where, m1 is the slope of the tangent to the curve.
Differentiating equation (ii) w.r.t. x
`2x + 2y * "dy"/"dx"` = 0
⇒ `"dy"/"dx" = - x/y`
⇒ m2 = `- x/y`
Where, m2 is the slope of the tangent to the circle.
To find the point of contact of the two circles
m1 = m2
⇒ `- y/x = - x/y`
⇒ x2 = y2
Putting the value of y2 in equation (ii)
x2 + x2 = 8
⇒ 2x2 = 8
⇒ x2 = 4
∴ x = ± 2
∵ x2 = y2
⇒ y = ± 2
∴ The point of contact of the two circles are (2, 2) and (– 2, 2).
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
At (0, 0) the curve y = x3 + x
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.