English

Find the Slope of the Tangent and the Normal to the Following Curve at the Indicted Point X2 + 3y + Y2 = 5 at (1, 1) ? - Mathematics

Advertisements
Advertisements

Question

Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?

Solution

\[x^2 + 3y + y^2 = 5\]

\[\text { On differentiating both sides w.r.t.x, we get }\]

\[2x + 3\frac{dy}{dx} + 2y \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( 3 + 2y \right) = - 2x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 2x}{3 + 2y}\]

\[\text { Now,} \]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) =\frac{- 2x}{3 + 2y}=\frac{- 2}{3 + 2}=\frac{- 2}{5}\]

\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_\left( 1, 1 \right)}=\frac{- 1}{\left( \frac{- 2}{5} \right)}=\frac{5}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.1 | Q 1.09 | Page 10

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×