English

Find the equation of the tangent and the normal to the following curve at the indicated points x = 3cosθ − cos3θ, y = 3sinθ − sin3θ ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 

Sum

Solution

`x=3costheta-cos^3theta,` `y=3sintheta-sin^3theta`

`rArr(dx)/(d theta)=-3sintheta +3cos^2thetasintheta `

And

`rArr(dy)/(d theta)=3costheta-3sin^2thetacostheta`

`rArr(dy)/(dx)=((dy)/(d theta))/((dx)/(d theta))=(3costheta-3sin^2thetacos theta)/(-3sintheta+3cos^2thetasintheta)=(costheta(1-sin^2theta))/(-sintheta(1-cos^2theta))=cos^3theta/-sin^3theta=-tan^3theta`

So equation of the tangent at θ is

`y-3sintheta+sin^3theta=-tan^3theta(x-3costheta+cos^3theta)`

`rArr4(ycos^3theta-xsin^3theta)=3sin4theta`

So equation of normal at θ is

`y-3sintheta+sin^3theta=1/tan^3theta(x-3costheta+cos^3theta)`

`rArrycos^3theta-xcos^3theta=3sin^4theta-sin^6theta-3cos^4theta+cos^6theta`

`rArr ysin^3theta-xcos^3theta=3sin^4theta-sin^6theta-3cos^4theta+cos^6theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 5.6 | Page 28

RELATED QUESTIONS

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Let `y = f(x)` be the equation of the curve, then equation of normal is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×