मराठी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y2 = 4ax at ( a M 2 , 2 a M ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?

उत्तर

\[y^2 =4ax\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[2y \frac{dy}{dx} = 4a\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y}\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( \frac{a}{m^2}, \frac{2a}{m} \right)\]

\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_\left( \frac{a}{m^2}, \frac{2a}{m} \right) =\frac{2a}{\left( \frac{2a}{m} \right)}=m\]

\[\text { Equation of tangent is, }\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{2a}{m} = m \left( x - \frac{a}{m^2} \right)\]

\[ \Rightarrow \frac{my - 2a}{m} = m\left( \frac{m^2 x - a}{m^2} \right)\]

\[ \Rightarrow my - 2a = m^2 x - a\]

\[ \Rightarrow m^2 x - my + a = 0\]

\[\text { Equation of normal is},\]

\[y - y_1 = \frac{1}{\text { Slope of tangent}} \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{2a}{m} = \frac{- 1}{m}\left( x - \frac{a}{m^2} \right)\]

\[ \Rightarrow \frac{my - 2a}{m} = \frac{- 1}{m}\left( \frac{m^2 x - a}{m^2} \right)\]

\[ \Rightarrow m^3 y - 2a m^2 = - m^2 x + a\]

\[ \Rightarrow m^2 x + m^3 y - 2a m^2 - a = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 3.09 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


At (0, 0) the curve y = x3 + x


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×