Advertisements
Advertisements
प्रश्न
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
पर्याय
π/4
π/2
π/3
none of these
उत्तर
π/3
\[\text { Given }:\]
\[x = \frac{\pi}{6}\]
\[\text { Now }, \]
\[y = 2 \sin^2 x\]
\[ \Rightarrow \frac{dy}{dx} = 4\sin x \cos x\]
\[ \Rightarrow \frac{dy}{dx} = 2 \sin 2x\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{6}} = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}\]
\[\text { Also }, \]
\[y = \cos 2x\]
\[ \Rightarrow \frac{dy}{dx} = - 2 \sin2x\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{6}} = - 2 \times \frac{\sqrt{3}}{2} = - \sqrt{3}\]
\[ \therefore \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\sqrt{3} + \sqrt{3}}{1 - \sqrt{3}\sqrt{3}} \right| = \left| \frac{2\sqrt{3}}{- 2} \right| = \sqrt{3}\]
\[ \Rightarrow \theta = \tan^{- 1} \left( \sqrt{3} \right) = \frac{\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.