Advertisements
Advertisements
प्रश्न
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
उत्तर
Let (x1, y1) be the required point.
x coordinate of the point is x1.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence,} y_1 = {x_1}^3 . . . \left( 1 \right)\]
\[\text { Now }, y = x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 3 x^2 \]
\[\text { Slope of tangent at }\left( x, y \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =3 {x_1}^2 \]
\[\text { Given that }\]
\[\text { Slope of tangent at }\left( x_1 , y_1 \right)= x\text { co-ordinate of the point }\]
\[ \Rightarrow 3 {x_1}^2 = x_1 \]
\[ \Rightarrow x_1 \left( 3 x_1 - 1 \right) = 0\]
\[ \Rightarrow x_1 = 0 \text { or }x_1 = \frac{1}{3}\]
\[ \Rightarrow y_1 = 0^3 \text{or} \ y_1 = \left( \frac{1}{3} \right)^3 (\text { From }(1))\]
\[ \Rightarrow y_1 = 0 \text { or }y_1 = \frac{1}{27}\]
\[\text { So, the points are }\left( x_1 , y_1 \right)=\left( 0, 0 \right),\left( \frac{1}{3}, \frac{1}{27} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.