Advertisements
Advertisements
प्रश्न
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
उत्तर
Let (x1, y1) be the required point.
Slope of the given line = 3
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence, } y_1 = 2 {x_1}^2 - x_1 + 1 . . . \left( 1 \right)\]
\[\text { Now, }y = 2 x^2 - x + 1 \]
\[ \therefore \frac{dy}{dx} = 4x - 1\]
\[\text { Now,} \]
\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =4 x_1 - 1\]
\[\text { Given }:\]
\[\text { Slope of the tangent = Slope of line }\]
\[ \therefore 4 x_1 - 1 = 3\]
\[ \Rightarrow x_1 = 1\]
\[\text { From (1), we get }\]
\[ y_1 = 2 - 1 + 1 = 2\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 2 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
At (0, 0) the curve y = x3 + x
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.