Advertisements
Advertisements
प्रश्न
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
उत्तर
The slope of the y-axis is \[\infty\] Now, let (x1, y1) be the required point.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence }, \frac{{x_1}^2}{4} + \frac{{y_1}^2}{25} = 1 . . . \left( 1 \right)\]
\[\text{ Now }, \frac{x^2}{4} + \frac{y^2}{25} = 1 \]
\[ \therefore \frac{2x}{4} + \frac{2y}{25}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{25}\frac{dy}{dx} = \frac{- x}{2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 25x}{4y}\]
\[\text { Now, }\]
\[\text { Slope of the tangent at}\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 25 x_1}{4 y_1}\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)=\text { Slope of they-axis [Given] }\]
\[ \therefore \frac{- 25 x_1}{4 y_1} = \infty \]
\[ \Rightarrow \frac{4 y_1}{- 25 x_1} = 0\]
\[ \Rightarrow y_1 = 0\]
\[\text { Also,} \]
\[\frac{{x_1}^2}{4} = 1 [\text { From eq. } (1)]\]
\[ \Rightarrow {x_1}^2 = 4\]
\[ \Rightarrow x_1 = \pm 2\]
\[\text { Thus, the required points are }\left( 2, 0 \right)\text { and }\left( - 2, 0 \right).\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.