Advertisements
Advertisements
प्रश्न
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
उत्तर
Let (x1, y1) be the required point.
Slope of the given line = \[-\] 2
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence,} {y_1}^2 = 3 - 4 x_1 . . . \left( 1 \right)\]
\[\text { Now }, y^2 = 3 - 4x\]
\[ \Rightarrow 2y\frac{dy}{dx} = - 4\]
\[ \therefore \frac{dy}{dx} = \frac{- 4}{2y} = \frac{- 2}{y}\]
\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 2}{y_1}\]
\[\text { Given }:\]
\[\text { Slope of the tangent = Slope of the line }\]
\[ \Rightarrow \frac{- 2}{y_1} = - 2\]
\[ \Rightarrow y_1 = 1\]
\[\text { From (1), we get }\]
\[1 = 3 - 4 x_1 \]
\[ \Rightarrow - 2 = - 4 x_1 \]
\[ \Rightarrow x_1 = \frac{1}{2}\]
\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{1}{2}, 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.