मराठी

Find the Points on the Curve 2a2y = X3 − 3ax2 Where the Tangent is Parallel to X-axis ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?

बेरीज

उत्तर १

Let (x1, y1) represent the required points.
The slope of the x-axis is 0.
Here,

\[2 a^2 y = x^3 - 3a x^2 \]

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence }, 2 a^2 y_1 = {x_1}^3 - 3a {x_1}^2 . . . \left( 1 \right)\]

\[\text { Now }, 2 a^2 y = x^3 - 3a x^2 \]

\[ \text { On differentiating both sides w.r.t.x, we get }\]

\[2 a^2 \frac{dy}{dx} = 3 x^2 - 6ax\]

\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2 - 6ax}{2 a^2}\]

\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{3 {x_1}^2 - 6a x_1}{2 a^2}\]

\[\text { Given }:\]

\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text { Slope of the x-axis }\]

\[ \Rightarrow \frac{3 {x_1}^2 - 6a x_1}{2 a^2} = 0\]

\[ \Rightarrow 3 {x_1}^2 - 6a x_1 = 0\]

\[ \Rightarrow x_1 \left( 3 x_1 - 6a \right) = 0\]

\[ \Rightarrow x_1 = 0 \text { or }x_1 = 2a\]

\[\text { Also}, \]

\[2 a^2 y_1 = 0 \text { or }2 a^2 y_1 = 8 a^3 - 12 a^3 [\text { From eq. } (1)]\]

\[ \Rightarrow y_1 = 0 \text { or } y_1 = - 2a\]

\[\text { Thus, the required points are}\left( 0, 0 \right)\text { and }\left( 2a, - 2a \right).\]

shaalaa.com

उत्तर २

The given equation of the curve is

`2a^2y = x^3 - 3ax^2`    ............(i)

Differentiating with respect to x , we get

`2a^2dy/dx = 3x^2 - 6ax`

∴ `"Slope"   m_1 = dy/dx = 1/(2a^2)[3x^2 - 6ax]`  ..........(ii)

Also , 

Slope `m_2 = dy/dx = tanθ`

= tan0° = 0     [∵ Slope is parallel to x-axis]

∴ m- m2

⇒ `1/(2a^2)[3x^2 - 6ax] = 0`

⇒ 3x[x - 2a] = 0

⇒ x = 0 or 2a

∴ From (i)

y = 0 or -2a

Thus , the required points are (0 , 0) or (2a , -2a)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.1 | Q 15 | पृष्ठ ११

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = x and x2 = y.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


The curve y = `x^(1/5)` has at (0, 0) ______.


At (0, 0) the curve y = x3 + x


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×