मराठी

Find the Angle of Intersection of the Following Curve X 2 a 2 + Y 2 B 2 = 1 and X2 + Y2 = Ab ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?

उत्तर

\[\text { Given curves are,}\]

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 . . . \left( 1 \right)\]

\[ x^2 + y^2 = ab . . . \left( 2 \right)\]

\[\text { Multiplying } (2) by\frac{1}{a^2},\]

\[\frac{x^2}{a^2} + \frac{y^2}{a^2} = \frac{b}{a} . . . \left( 3 \right)\]

\[\text { Subtracting (1) from (3), we get }\]

\[\frac{y^2}{a^2} - \frac{y^2}{b^2} = \frac{b}{a} - 1\]

\[ \Rightarrow y^2 \left( \frac{b^2 - a^2}{a^2 b^2} \right) = \frac{b - a}{a}\]

\[ \Rightarrow y^2 = \frac{b - a}{a} \times \frac{a^2 b^2}{\left( b + a \right)\left( b - a \right)} = \frac{a b^2}{b + a}\]

\[ \Rightarrow y = \pm b\sqrt{\frac{a}{b + a}}\]

\[\text { Substituting this in } (3),\]

\[\frac{x^2}{a^2} + \frac{a b^2}{\left( b + a \right)\left( a^2 \right)} = \frac{b}{a}\]

\[ \Rightarrow \left( a + b \right) x^2 + a b^2 = a b^2 + a^2 b\]

\[ \Rightarrow x^2 = \frac{a^2 b}{a + b}\]

\[ \Rightarrow x = \pm a\sqrt{\frac{b}{a + b}}\]

\[ \therefore \left( x, y \right)=\left( \pm a\sqrt{\frac{b}{a + b}}, \pm b\sqrt{\frac{a}{b + a}} \right)\]

\[\text { Now },\left( x, y \right)=\left( a\sqrt{\frac{b}{a + b}}, b\sqrt{\frac{a}{b + a}} \right)\]

\[\text { Differentiating (1) w.r.t.x,we get,}\]

\[\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x b^2}{a^2 y}\]

\[ \Rightarrow m_1 = \frac{- a b^2 \sqrt{\frac{b}{a + b}}}{a^2 b\sqrt{\frac{a}{b + a}}} = \frac{- b\sqrt{b}}{a\sqrt{a}}\]

\[\text { Differenntiating (2) w.r.t.x,we get, }\]

\[2x + 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x}{y}\]

\[ \Rightarrow m_2 = \frac{- a\sqrt{\frac{b}{a + b}}}{b\sqrt{\frac{a}{b + a}}} = \frac{- a\sqrt{b}}{b\sqrt{a}}\]

\[\text { We have,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- b\sqrt{b}}{a\sqrt{a}} + \frac{a\sqrt{b}}{b\sqrt{a}}}{1 + \left( \frac{b\sqrt{b}}{a\sqrt{a}} \right)\left( \frac{a\sqrt{b}}{b\sqrt{a}} \right)} \right| = \frac{\frac{- b^2 \sqrt{ab} + a^2 \sqrt{ab}}{a^2 b}}{\frac{a^2 b + a b^2}{a^2 b}} = \frac{\sqrt{ab}\left( a + b \right)\left( a - b \right)}{a^2 b} \times \frac{a^2 b}{ab\left( a + b \right)} = \frac{a - b}{\sqrt{ab}}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{a - b}{\sqrt{ab}} \right)\]

\[ {\text { Similarly, we can prove that }\theta=tan}^{- 1} \left( \frac{a - b}{\sqrt{ab}} \right) \text { for all possibilities of } \left( x, y \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.3 | Q 1.5 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Let `y = f(x)` be the equation of the curve, then equation of normal is


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×